

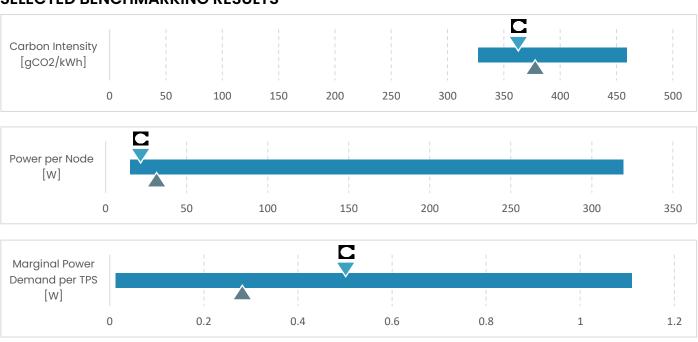
NOV

NETWORK ASSESSMENT

CELO

Electricity Consumption and Carbon Footprint of the CELO Network

EXECUTIVE SUMMARY


Network Assessment CELO Blockchain

November 2023

- CELO employs an **energy-efficient Proof of Stake (PoS)** protocol. In comparison to Proof of Work (PoW)-based protocols such as Bitcoin, CELO **consumes significantly less electricity**.
- We find a total annualized electricity consumption of 47 MWh for the CELO network as of September 2023.
- Furthermore, we calculated the **carbon emissions** associated with the electricity consumption via location specific **emission factors**, taking the network **node locations** into account.
- For the CELO network, we find a total annualized carbon footprint of 17.21 tCO₂e at a carbon intensity of 367 gCO₂ per kWh.
- The marginal power demand per TPS (transactions per second) in the CELO network amounts to 0.55 W.
- Compared to other PoS networks, CELO performs slightly above average in carbon intensity and power demand per node. Due to lower number of transactions, the marginal power demand per transaction is below average.
- In this assessment, we have focused on **the core CELO network**, comprising **validators**, and have not included emissions from ancillary activities like testnets or corporate operations.

SELECTED BENCHMARKING RESULTS

Legend: indicates the range, CELO's performance and median value of the peer group*.

^{*}Peer group consists of Algorand, Avalanche, Cardano, Cosmos, Ethereum, Polkadot, and Solana, which have been assessed in the latest CCRI PoS Benchmarking Study. Available here: https://carbon-ratings.com.

METHODOLOGY

The analyses underlying this factsheet follow the same approach and methodology as outlined in CCRI's methods whitepaper for assessing the electricity consumption and carbon footprint of PoS networks.¹

There are five main steps:

1	HARDWARE SELECTION	We analyze the network and its minimum hardware requirements and select the hardware sample that we use to measure a single node's electricity consumption.
2	HARDWARE MEASUREMENT	We run a full node on all selected hardware devices and measure their electricity consumption to calculate a best-guess estimate for the average network node while accounting for the hardware distribution.
3	TOTAL NETWORK ELECTRICITY CONSUMPTION	We estimate the electricity consumption of the entire network by scaling the electricity consumption with the total network node count.
4	MARGINAL ELECTRICITY CONSUMPTION	We examine the number of transactions handled during the measurement period and derive the marginal electricity consumption per transaction.
5	CARBON INTENSITY AND FOOTPRINT	We gather data on the node locations ² of the network and use regional emission factors to calculate the network specific carbon intensity. We use this carbon intensity to translate the network's electricity consumption into a carbon footprint.

¹ CCRI (2022). Determining the electricity consumption and carbon footprint of Proof-of-Stake networks.

https://carbon-ratings.com/dl/whitepaper-pos-methods-2022

² We derive location data from https://thecelo.com.

Results

CELO: Electricity Consumption and Carbon Footprint (all metrics as of September 28, 2023)

The analyses underlying this factsheet are commissioned by Climate Collective

KEY NETWORK METRICS

Name Celo

Symbol CELO

Consensus mechanism Proof of Stake

Network type Layer 1

Validator count 220³

24h-analysis-period transaction count 201,937

Annualized transaction count 73,707,005

KEY FINANCIAL METRICS

Market capitalization (rank) [USD] 231,031,231.81 (#116 according to CoinMarketCap)

Market price [USD]

0.4514

Circulating supply [CELO]

511,790,944

0024 hours trading volume [USD]

10,115,684.54

KEY ELECTRICITY METRICS

Average electrical power per node [W] 24.334

> Electrical power of network [W] 5,352.60

Annualized electricity consumption [kWh] 46,896.94

Marginal power consumption per TPS [W] 0.54900423

KEY CARBON METRICS

Annualized CO₂ emissions [tCO₂]

Marginal CO₂ emissions per tx [g CO₂] 0.05597

Applied CO₂ emission intensity [g CO₂/kWh] 367.00

³ CELO defines in its documentation two running nodes (with slightly deviating configurations) per validator; therefore, we multiply the number of validators (110) times 2.

⁴ Value for a representative node assuming the node distribution among hardware configurations as shown in the Appendix.

Appendix

HARDWARE-SPECIFIC MEASUREMENT RESULTS

Hardware configuration	1	2	3	4	5	6	
СРИ	Broadcom BCM2711	Intel i3-8109U	Intel i5- 8400T	Intel i5- 1135G7	Intel i5-10400	AMD 3970X	
Ram	8 GB	8 GB	8 GB	16 GB	64 GB	256 GB	
Storage	128 GB SD	512 GB SSD	256 GB SSD	2 TB SSD	2 TB SSD	2 TB SSD	
Configurations selected	no	no	yes	yes	yes	yes	
Mean electrical power in idle [W]	3.031	2.688	2.893	3.675	25.304	80.464	
Mean electrical power of node [W]	-	-	5.380	5.704	26.371	93.068	
Assumed node distribution	-	-	12.5 %	37.5 %	37.5 %	12.5 %	
Measurement period	2023-09-28 14:09 CET to 2023-09-29 14:09 CET						
Software version	Geth: 1.8.0-stable; Docker image: 2b11ce94fc27						

About CCRI

CCRI - Crypto Carbon Ratings Institute - is a research-driven providing data company on sustainability aspects cryptocurrencies, blockchain and other The technologies. interdisciplinary team has built a multi-year research track record with a specific focus on cryptocurrencies and their sustainability impacts. CCRI uses the most up-to-date data sources as well as methods based on formerly peer-reviewed studies published in renowned scientific journals. CCRI provides insights that help their clients to understand and manage crypto-related ESG exposure. They serve a broad range of clients including institutional investors, exchanges and blockchain networks.

© Crypto Carbon Ratings Institute, 2023

Crypto Carbon Ratings Institute (CCRI) is a brand of CCRI GmbH based in Dingolfing, Germany.