

JAN

FACT SHEET

Polymesh

Electricity Consumption and Carbon Footprint

FACT SHEET

Polymesh: Electricity Consumption and Carbon Footprint (all metrics as of November 28, 2022)

The analyses underlying this factsheet are commissioned by Polymesh Association.

KEY NETWORK METRICS

Name	Polymesh
Symbol	POLYX
Consensus mechanism	Proof of Stake
Network type	Layer 1
Validator count	39
24h-analysis-period transaction count	110
Annualized transaction count	40,150

KEY ELECTRICITY METRICS

Average electrical power per node [W]	12.62 ¹
Electrical power of network [W]	492.18
Annualized electricity consumption [kWh]	4,312.01
Marginal electricity consumption per tx [Ws]	N/A^2

KEY CARBON METRICS

Annualized CO ₂ emissions [t]	1.98
Marginal CO2 emissions per tx [kg]	N/A ²
Applied CO₂ emission intensity [g/kWh]	459 (world CO ₂ emission intensity) ³

¹ Value for a representative node assuming the node distribution among hardware configurations as shown in the Appendix.

² The number of transactions that were executed during our measurement period falls below the threshold required to build a mathematical regression model.

³ IEA (2022). World Energy Outlook 2022. https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf

Appendix

The analyses underlying this factsheet follow the same approach and methodology as outlined in CCRI's methods whitepaper for assessing the electricity consumption and carbon footprint of PoS networks.⁴ There are five main steps:

- First, we analyze the network and its minimum hardware requirements and select the hardware that we use to measure a single node's electricity consumption.
- Second, we run a full node on all selected hardware devices and measure their electricity consumption and calculate a best guess estimate based on representative hardware distribution.
- Third, we estimate the electricity consumption of the complete network by scaling the electricity consumption up with the total node count.
- Fourth, we examine the number of transactions handled during the measurement period and derive the marginal electricity consumption per transaction.
- Fifth, we use the world average carbon intensity to translate the network's electricity consumption into a carbon footprint.

Hardware	1	2	3	4	5	6	
configuration							
0011	Broadcom	Intel i3-	Intel i5-	Intel i5-	Intel i5-	AMD 3970X	
СРО	BCM2711	8109U	8400T	1135G7	10400		
Ram	8 GB	8 GB	8 GB	16 GB	64 GB	256 GB	
Storage	128 GB SD	512 GB SSD	256 GB SSD	2 TB SSD	2 TB SSD	2 TB SSD	
Configurations	VOS	VOS	VOC	VOS	VOS	VOS	
selected	yes	yes	yes	yes	yes	yes	
Mean							
electrical	3 039	2 696	2947	3 656	25.039	78 174	
power in idle	0.000	2.000	2.047	0.000	20.000	70.174	
[w]							
Mean							
electrical	3 373	4 0 2 6	5 207	7693	28 802	107 374	
power of node	0.070	4.020	0.207	7.000	20.002	107.074	
[w]							
Assumed node	3125 %	15 625 %	31.25 %	3125 %	15 625 %	3125 %	
distribution	0.120 %	10.020 %	01.20 %	01.20 %	10.020 %	0.120 %	
Measurement	2022-11-28 15.11 CET to 2022-11-29 15.11 CET						
period							
Software version	v5.1.0 (PC1: v5.1.0-ARM)						

HARDWARE-SPECIFIC MEASUREMENT RESULTS

⁴ CCRI (2022). Determining the electricity consumption and carbon footprint of Proof-of-Stake networks. https://carbon-ratings.com/dl/whitepaper-pos-methods-2022

About CCRI

CCRI - Crypto Carbon Ratings Institute - is a research-driven providing data company on sustainability aspects of cryptocurrencies, blockchain and other The technologies. interdisciplinary team has built a multi-year research track record with a specific focus on cryptocurrencies and their sustainability impacts. CCRI uses the most up-to-date data sources as well as methods based on formerly peer-reviewed studies published in renowned scientific journals. CCRI provides insights that help their clients to understand and manage crypto-related ESG exposure. They serve a broad range of clients including institutional investors, exchanges and blockchain networks.

© Crypto Carbon Ratings Institute, 2023

Crypto Carbon Ratings Institute (CCRI) is a brand of CCRI GmbH based in Dingolfing, Germany.

https://carbon-ratings.com